Functions-Derivatives-Integrals Calculator

Publish date: 2024-07-27
Functions-Derivatives-Integrals Calculator MathCelebrity logo Image to Crop Given ƒ(x) = x2 - x - 12dx
Determine the integral ∫ƒ(x)
Go through and integrate each term

Integrate term 1

ƒ(x) = x2

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= 1, n = 2
and x is the variable we integrate
∫ƒ(x)  =  1x(2 + 1)
  2 + 1

∫ƒ(x)  =  1x3
  3

Integrate term 2

ƒ(x) = -x

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= -1, n = 1
and x is the variable we integrate
∫ƒ(x)  =  -1x(1 + 1)
  1 + 1

∫ƒ(x)  =  -1x2
  2

Integrate term 3

ƒ(x) = -12

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= -12, n = 0
and x is the variable we integrate
∫ƒ(x)  =  -12x(0 + 1)
  0 + 1

∫ƒ(x) = -12x

Collecting all of our integrated terms we get:

∫ƒ(x) = x3/3 - x2/2 - 12x

Evaluate ∫ƒ(x) on the interval [-5,10]

The value of the integral over an interval is ∫ƒ(10) - ∫ƒ(-5)

Evaluate ∫ƒ(10)

∫ƒ(10) = (10)3/3 - (10)2/2 - 12(10)
∫ƒ(10) = (1000)/3 - (100)/2 - 12(10)
∫ƒ(10) = 333.33333333333 - 50 - 120
∫ƒ(10) = 163.33333333333

Evaluate ∫ƒ(-5)

∫ƒ(-5) = (-5)3/3 - (-5)2/2 - 12(-5)
∫ƒ(-5) = (-125)/3 - (25)/2 - 12(-5)
∫ƒ(-5) = -41.666666666667 - 12.5 + 60
∫ƒ(-5) = 5.8333333333333

Determine our answer

∫ƒ(x) on the interval [-5,10] = ∫ƒ(10) - ∫ƒ(-5)
∫ƒ(x) on the interval [-5,10] = 163.33333333333 - 5.8333333333333
Final Answer

∫ƒ(x) on the interval [-5,10] = 157.5


What is the Answer?

∫ƒ(x) on the interval [-5,10] = 157.5

How does the Functions-Derivatives-Integrals Calculator work?

Free Functions-Derivatives-Integrals Calculator - Given a polynomial expression, this calculator evaluates the following items:
1) Functions ƒ(x).  Your expression will also be evaluated at a point, i.e., ƒ(1)
2) 1st Derivative ƒ‘(x)  The derivative of your expression will also be evaluated at a point, i.e., ƒ‘(1)
3) 2nd Derivative ƒ‘‘(x)  The second derivative of your expression will be also evaluated at a point, i.e., ƒ‘‘(1)
4)  Integrals ∫ƒ(x)  The integral of your expression will also be evaluated on an interval, i.e., [0,1]
5) Using Simpsons Rule, the calculator will estimate the value of ≈ ∫ƒ(x) over an interval, i.e., [0,1]
This calculator has 7 inputs.

What 1 formula is used for the Functions-Derivatives-Integrals Calculator?

Power Rule: f(x) = xn, f‘(x) = nx(n - 1)

For more math formulas, check out our Formula Dossier

What 8 concepts are covered in the Functions-Derivatives-Integrals Calculator?

derivativerate at which the value y of the function changes with respect to the change of the variable xexponentThe power to raise a numberfunctionrelation between a set of inputs and permissible outputs
ƒ(x)functions-derivatives-integralsintegrala mathematical object that can be interpreted as an area or a generalization of areapointan exact location in the space, and has no length, width, or thicknesspolynomialan expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable(s).powerhow many times to use the number in a multiplication

Example calculations for the Functions-Derivatives-Integrals Calculator

Tags:

Add This Calculator To Your Website

ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfmbOqtY2pn6l3pJq%2Frn2csVxufWJixW59kV%2BdqaxtZXOxwMCrnp6sYXJ9Z7zTmqmgnaRninFyyK2Yq5%2BVqYpugYRrempoVqjBor7Gnqt2aFVnkHJyzaygpqhtbXOxuJyCpa2dl6eurQ%3D%3D